Home > Medical Devices > What You Should Know Before Getting a Prosthetic Leg

What You Should Know Before Getting a Prosthetic Leg

Author: Ingrid

Dec. 23, 2024

5 0

What You Should Know Before Getting a Prosthetic Leg

What You Should Know Before Getting a Prosthetic Leg

Prosthetic legs, or prostheses, can help people with leg amputations get around more easily. They mimic the function and, sometimes, even the appearance of a real leg. Some people still need a cane, walker or crutches to walk with a prosthetic leg, while others can walk freely.

Goto Wonderfu to know more.

If you have a lower limb amputation, or you will soon, a prosthetic leg is probably an option you&#;re thinking about. There are a few considerations you should take into account first. 

Not Everyone Benefits from a Prosthetic Leg

While many people with limb loss do well with their prosthetic legs, not everyone is a good candidate for a leg prosthesis. A few questions you may want to discuss with your doctor before opting for a prosthetic leg include:

  • Is there enough soft tissue to cushion the remaining bone?
  • How much pain are you in?
  • What is the condition of the skin on the limb?
  • How much range of motion does the residual limb have?
  • Is the other leg healthy?
  • What was your activity level before the amputation?
  • What are your mobility goals?

The type of amputation (above or below the knee) can also affect your decision. It&#;s generally easier to use a below-the-knee prosthetic leg than an above-the-knee prosthesis. If the knee joint is intact, the prosthetic leg takes much less effort to move and allows for more mobility.

The reason behind the amputation is also a factor, as it may impact the health of the residual limb. Your physical health and lifestyle are also important to consider. If you were not very active and lost your leg due to peripheral vascular disease or diabetes, for example, you will struggle more with a prosthesis than someone who was extremely active but lost a limb in a car accident.

When it comes to amputation, each person is unique. The decision to move forward with a prosthesis should be a collaborative one between you and your doctor.

Prosthetic Legs Are Not One Size Fits All

If your doctor prescribes a prosthetic leg, you might not know where to begin. It helps to understand how different parts of a prosthesis work together:

  • The prosthetic leg itself is made of lightweight yet durable materials. Depending on the location of the amputation, the leg may or may not feature functional knee and ankle joints.
  • The socket is a precise mold of your residual limb that fits snugly over the limb. It helps attach the prosthetic leg to your body.
  • The suspension system is how the prosthesis stays attached, whether through sleeve suction, vacuum suspension/suction or distal locking through pin or lanyard.

There are numerous options for each of the above components, each with their own pros and cons. &#;To get the right type and fit, it&#;s important to work closely with your prosthetist &#; a relationship you might have for life.

A prosthetist is a health care professional who specializes in prosthetic limbs and can help you select the right components. You&#;ll have frequent appointments, especially in the beginning, so it&#;s important to feel comfortable with the prosthetist you choose.

Rehabilitation Is an Ongoing, Collaborative Process

Once you&#;ve selected your prosthetic leg components, you will need rehabilitation to strengthen your legs, arms and cardiovascular system, as you learn to walk with your new limb. You&#;ll work closely with rehabilitation physicians, physical therapists and occupational therapists to develop a rehabilitation plan based on your mobility goals. A big part of this plan is to keep your healthy leg in good shape: while prosthetic technology is always advancing, nothing can replicate a healthy leg. 

Getting Used to a Prosthetic Leg Isn&#;t Easy

Learning to get around with a prosthetic leg can be a challenge. Even after initial rehabilitation is over, you might experience some issues that your prosthetist and rehabilitation team can help you manage. Common obstacles include:

  • Excessive sweating (hyperhidrosis), which can affect the fit of the prosthesis and lead to skin issues.
  • Changing residual limb shape. This usually occurs in the first year after an amputation as the tissue settles into its more permanent shape, and may affect the fit of the socket.
  • Weakness in the residual limb, which may make it difficult to use the prosthesis for long periods of time.
  • Phantom limb pain could be intense enough to impact your ability to use the prosthesis.

A Note on Phantom Limb Pain

Phantom limb pain, or pain that seems to come from the amputated limb, is a very real problem that you may face after an amputation. About 80% of people with amputations experience phantom limb pain that has no clear cause, although pain in the limb before amputation may be a risk factor.

Mirror therapy, where you perform exercises with a mirror, may help with certain types of phantom limb pain. Looking at yourself in the mirror simulates the presence of the amputated leg, which can trick the brain into thinking it&#;s still there and stop the pain.

In other cases, phantom limb pain might stem from another condition affecting the residual limb, such as sciatica or neuroma. Addressing these root causes can help eliminate the phantom pain.

Your Leg Prosthesis Needs May Change

At some point, you may notice that you aren&#;t as functional as you&#;d like to be with your current leg prosthesis. Maybe your residual limb has stabilized and you&#;re ready to transition from a temporary prosthesis that lasts a few months to one that can last three to five years. Or maybe you&#;ve &#;outwalked&#; your prosthesis by moving more or differently than the prosthesis is designed for. New pain, discomfort and lack of stability are some of the signs that it may be time to check in with your prosthetist to reevaluate your needs.

Your prosthetist might recommend adjusting your current equipment or replacing one of the components. Or you might get a prescription for a new prosthetic leg, which happens on average every three to five years. If you receive new components, it&#;s important to take the time to understand how they work. Physical therapy can help adjust to the new components or your new prosthetic leg.

Prosthetic Leg Technology Is Always Evolving

There are always new developments in prosthetic limb technology, such as microprocessor-driven and activity-specific components.

  • Microprocessor joints feature computer chips and sensors to provide a more natural gait. They may even have different modes for walking on flat surfaces or up and down the stairs.
  • There are also specialized prosthetic legs for different activities, such as running, showering or swimming, which you can switch to as needed. In some cases, your everyday prosthetic leg can be modified by your prosthetist to serve different purposes.
  • Osseointegration surgery is another option. This procedure involves the insertion of a metal implant directly into the bone, so there is no need for a socket. The prosthetic leg then attaches directly to that implant. While this procedure is not right for everyone and is still under study, it can provide improved range of motion and sensory perception.

It&#;s important to remember that you&#;re not alone in navigating the many different prosthetic leg options. Your care team will help you weigh the pros and cons of each and decide on the ideal prosthetic leg that matches your lifestyle.

Johns Hopkins Comprehensive Amputee Rehabilitation Program

Having the support of a dedicated team of experts is essential when recovering from the amputation of a limb. At Johns Hopkins, our team of physiatrists, orthotists, prosthetists, physical and occupational therapists, rehabilitation psychologists and other specialists works together to create your custom rehabilitation plan.

Learn more about our amputee rehabilitation program

Prosthetics - NCBI - National Institutes of Health (NIH)

This activity reviews orthopedic prosthetics that are currently used in practice. It discusses both lower limb and upper limb prostheses and the different devices that make up their componentry. Also discussed are the complications associated with prosthetic devices and emerging advances in technology. This activity also highlights the critical role of the interprofessional team in caring for patients with prostheses.

Limb amputation is not uncommon in orthopedic practice. [1] As of , nearly 2 million people in the United States were living with limb loss. That's approximately 1 amputee in every 150 people, and that number is projected to double or triple by . Every clinician will treat a patient with limb amputation at some point in their practice. It is important to understand the factors necessary to care for these patients and their required energy expenditure.

Function

Lower Limb Prosthetics 

Lower extremity amputations are not uncommon in the United States.  Approximately 110,000 people are subject to some level of major (excluding toes) lower limb amputation each year.[2] Up to 70% of lower limb amputations result from a disease state, most of which are due to vascular disease and diabetes. The remaining lower limb amputations are the result of trauma, congenital abnormality, and tumor. Furthermore, the majority of these amputations are transtibial or at a distal site; transfemoral are less common. Interestingly enough, of the 85% of amputees fitted for a prosthesis, only 5% use the prosthetic limb for more than half of their daily walking.[3]

The Center for Medicare and Medicaid Services (CMS) has created a classification system to help guide practitioners and prosthetists to select the appropriate componentry based on their potential to be successful with the prosthesis. This is called the K-Classification System for Functional Ambulation and is often referred to as a patient&#;s &#;K-level.&#;[4] This is especially important to consider in patients with CMS payer status not to place an undue burden on families if the particular prosthesis recommended is not covered by insurance.

The K-Classification for Functional Ambulation[4]

  • Level 0: Does not have the ability or potential to ambulate or transfer safely with or without assistance, and a prosthesis does not enhance their quality of life or mobility.

    Related articles:
    What is the most commonly used laser for retinal photocoagulation?
    Laparoscopic Instruments – Devices for Laparoscopy

    The company is the world’s best prosthetic tools supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

  • Level 1: Has the ability or potential to use a prosthesis for transfers or ambulation on level surfaces at fixed cadence&#;typical of the limited and unlimited household ambulator.

  • Level 2: Has the ability or potential for ambulation with the ability to traverse low-level environmental barriers such as curbs, stairs, or uneven surfaces&#;typical of the limited community ambulator.

  • Level 3: Has the ability or potential for ambulation with variable cadence.  Typical of the community ambulator who has the ability to traverse most environmental barriers and may have vocational, therapeutic, or exercise activity that demands prosthetic utilization beyond simple locomotion.

  • Level 4: Has the ability or potential for prosthetic ambulation that exceeds basic ambulation skills, exhibiting high impact, stress, or energy levels&#;typical of the prosthetic demands of the child, active adult, or athlete.

The goals of a lower limb prosthesis include it be comfortable, lightweight, durable, aesthetically pleasing, low maintenance, and provide an appropriate degree of mechanical function for the amputee&#;s K-level. The major components of a lower extremity prosthesis include the socket, suspension mechanism, knee joint (if needed), pylon, and the terminal device.

The socket is the portion of the prosthesis that encompasses the residual limb.  The initial socket may be a temporary one, sometimes referred to as a preparatory socket. It can be formed with the use of a plaster molding of the residual limb as a template. It is used in the acute setting after amputation as swelling continues to decrease and the surgical incision heals.

The prosthetic socket serves several important roles. It protects the residual limb but also allows for weight-bearing and load distribution. The most commonly used socket today is a patellar tendon-bearing (PTB) prosthesis. This socket is used specifically for transtibial amputations. More modern designs have incorporated hydrostatic loading to more evenly distribute the load through the residual limb, also known as a total-surface bearing.[5] These designs help prevent skin breakdown and are more comfortable for the amputee.

The suspension mechanism attaches the prosthesis to the residual limb. This can be accomplished with the use of belts, wedges, locks, and/or suction. Some suspension designs are created using a hybrid of the aforementioned elements. The two types of standard suspension mechanisms are locking and suction, each of which utilizes a silicone-based sock applied over the residual limb, which is then inserted into the socket.  The locking system utilizes a pin or strap adhered to the silicone sock and a distal mechanism that fastens to the pin or strap respectively.  A suction suspension system utilizes a similar silicone sock with a one-way expulsion valve and sealing sleeve on the socket to create an air-tight seal, stabilizing the limb from the proximal seal downward.   

An articulating knee joint is sometimes appropriate for the prosthesis. These may consist of a single axis simple hinge joint or a polycentric axis with multiple centers of rotation.  The simplest and most commonly used mechanism is the single axis hinge joint, of which the primary function is to provide articulation, allow knee flexion in swing-phase, and resist knee flexion during weight-bearing.[6]  A polycentric knee joint incorporates four and six-bar mechanisms to enhance stance-phase stability and swing-phase kinematics. Although highly successful in developed countries, the cost and complexity associated with polycentric knee joints make them limited in developing countries.

Even more expensive modern designs have made use of microprocessor-controlled hydraulic knee joints that provide more reliable control when ambulating at different speeds, going up and downstairs, and walking on uneven surfaces.

The pylon or &#;shell&#; portion of a prosthetic is what attaches the socket to the terminal device. It can also be referred to as the containment socket. Recent advances in prosthetic technology have paved the way for dynamic pylons that permit axial rotation and absorb energy from the residual limb. These can be endoskeletal or exoskeletal, whichever is more functionally appropriate and aesthetically pleasing for the amputee.

The terminal device is the last piece of the prosthetic puzzle. This is typically a traditional looking foot, but more customized devices exist for high-level athletes. Ankle function is typically built into the terminal device, however, separate ankle joints may be beneficial in some patient populations. The drawback to these higher-functioning prostheses with ankle joints is the added weight to the distal end of the prosthesis.  This added weight requires more energy expenditure and limb strength to control the additional degree of freedom.

The prosthetic foot serves to provide a stable surface, absorb shock, replace lost muscle function, replicate the anatomic joint, and restore aesthetics.  Terminal devices can be broken down into non-energy-storing feet and energy-storing feet.

Non-energy-storing feet include a single-axis foot and solid ankle cushioned heel (SACH). The SACH has been extremely popular since its inception and uses a compressible material in the heel to mimic ankle plantarflexion, permitting a smooth gait.  It is a great option for the K-1 level ambulator or a sedentary patient with a transfemoral or transtibial amputation.[2] The single-axis foot adds passive plantarflexion and dorsiflexion, increasing stance phase stability.

Energy-storing feet include the multiaxis foot and the dynamic response foot.  The multiaxis foot adds inversion, eversion, and rotation to the traditional abilities of the single-axis foot.  The increased degrees of freedom of the multiaxis foot make it a great option for the K-2 and K-3 level ambulators who can perform even light to moderate level activity.

The dynamic response energy-storing foot is considered top-of-the-line when it comes to lower extremity terminal prosthetic devices and is reserved for younger, more athletic populations.  This device uses a flexible keel that deforms under pressure and returns to its original shape when the load is removed.[7] This allows for higher-level functions such as running and competitive sports participation.  These terminal devices are suitable for the K-3 and K-4 level ambulatory.

Upper Limb Prosthetics 

Upper extremity amputations are certainly rarer than lower extremity amputations. As of , approximately 41,000 people in the United States were living with major (excluding hand and finger, etc.) upper extremity amputations.[1] This number is expected to triple by the year , following the same trend as lower extremity amputations. Approximately 80% of major upper extremity amputations are the result of traumatic injury.[1] The remainder is secondary to vascular disease, tumor, and infection.

Transradial amputations are the most common amputation performed proximal to the wrist.[8] At this level, preservation of a least 5cm is important for prosthesis fitting.[9] Prosthetic fitting for upper extremity amputations can begin much quicker than for lower extremity amputations due to less concern for wound breakdown, with some centers fitting immediately postoperatively.[10] Early fitting in upper extremity prostheses can protect the stump site, help control pain and edema, and lead to improved outcomes.

Orthopedic surgeons and prosthetists should consider amputation level, expected functional outcomes, financial resources, aesthetic importance, and job requirements of the amputee when fitting for a prosthesis.  Like lower extremity prostheses, there are a variety of upper extremity prostheses available to patients. These include cosmetic, body-powered, myoelectric, and hybrid prostheses.[11]

Cosmetic prostheses are generally the most lightweight prostheses available and require the least amount of harnessing.[9] That being said, they provide the least amount of function for the amputee. Body-powered prostheses come at a moderate cost and weight but are the most durable on the market. They provide the most sensory feedback but are less aesthetically pleasing and require more gross limb movement. Myoelectric prostheses function by transmitting electrical activity from muscle contraction to surface electrodes on the residual limb. These electrical signals are then sent to the motor to initiate the function of the terminal device. These devices tend to be the most expensive prostheses available. They are heavier, provide less sensory feedback, and require the most training for amputees.  However, they do provide more functional use and are more aesthetically pleasing. Hybrid prostheses use a combination of myoelectrical devices and cables to perform a multitude of functions. Transhumeral amputees generally use these devices.

The goals of upper extremity prostheses are similar to lower extremity prostheses. The major components of upper extremity prostheses include the terminal devices, wrist units, elbow units, and shoulder units.

Terminal devices can be passive or active.  Passive devices are cheaper more aesthetically pleasing than active devices but provide less function.  Newer materials can produce prostheses that are nearly indistinguishable from a native hand.  Active terminal devices are more expensive but allow for more function.  They are generally divided into hooks and prosthetic hands with myoelectric devices and cables. There are 5 types of grips available that can be selected based upon desired prosthetic function. These include precision grips (pincer function), tripod grips (3-jaw pinch), lateral pinch grips (key pinch), hook power grips (carrying a briefcase), and spherical grips (turning a doorknob).  Hand-like devices are a good choice for patients that work in an office setting, while non-hand prehension, or grasping) devices are better for laborers&#;another factor to consider is whether a voluntary opening or a voluntary closing mechanism would best suit the patient.

Wrist components often come in several flavors. A quick-disconnect unit allows for a simple exchange of different types of terminal devices. This allows patients to perform a multitude of functions. A locking wrist unit is one that prevents rotation during lifting and grasping.  Wrist flexion units allow for flexion and extension.

Elbow units are generally either rigid or flexible. A rigid elbow hinge unit can be used when an amputee can still perform elbow flexion but lacks pronosupination. These devices can provide increased stability, especially in patients with a short transradial amputation stump. A flexible elbow hinge can be selected for patients who retain sufficient pronosupination in addition to flexion and extension. These devices are desirable for patients with a wrist disarticulation or long transradial amputation stump and provide more function for the patient.

For patients with amputations at the level of the shoulder, prosthesis fitting becomes much more difficult. The increased weight and energy expenditure of prostheses at this level lead many patients to choose a prosthetic that is purely aesthetic in nature. Cosmetic prostheses in this patient population improve self-image, confidence, and the fit of clothing.

Contact us to discuss your requirements of Prosthetic equipment speed Socket Router. Our experienced sales team can help you identify the options that best suit your needs.

Comments

0